Apache Web Server Software

Posted on  by admin

What is Apache Web Server?

Apache HTTP Server is a free and open-source web server that delivers web content through the internet. It is commonly referred to as Apache and after development, it quickly became the most popular HTTP client on the web. It’s widely thought that Apache gets its name from its development history and process of improvement through applied patches and modules but that was corrected back in 2000. It was revealed that the name originated from the respect of the Native American tribe for its resiliency and durability.

Apache is a remarkable piece of application software. It is the most widely used Web Server application in the world with more than 50% share in the commercial web server market. Apache is the most widely used Web Server application in Unix-like operating systems but can be used on almost all platforms such as Windows, OS X, OS/2, etc. There are mainly 3 web servers are available. They are Apache, Nginx and IIS. But Apache is the most used web server. Apache is very important part of LAMP (Linux, Apache, Mariadb, PHP) stack. This course covers simple as well as advanced topics. Step by step details of how we have setup the lab is also given. The Apache HTTP server is the most widely-used web server in the world. It provides many powerful features including dynamically loadable modules, robust media support, and extensive integration with other popular software. In this guide, we’ll explain how to install an Apache web server on your Ubuntu 20.04 server. The Apache HTTP Server, an open-source web server developed by the Apache Software Foundation. The Apache server is used to host web content. It responds to requests for content from web browsers, such as Internet Explorer and Firefox.

Now, before we get too in depth on Apache, we should first go over what a web application is and the standard architecture usually found in web apps.

Apache Web Application Architecture

Apache is just one component that is needed in a web application stack to deliver web content. One of the most common web application stacks involves LAMP, or Linux, Apache, MySQL, and PHP.

Linux is the operating system that handles the operations of the application. Apache is the web server that processes requests and serves web assets and content via HTTP. MySQL is the database that stores all your information in an easily queried format. PHP is the programming language that works with apache to help create dynamic web content.

While actual statistics may vary, it’s fair to say a large portion of web applications run on some form of the LAMP stack because it is easy to build and also free to use. For the most part, web applications tend to generally have similar architecture and structure even though they serve many different functions and purposes. Most web applications also benefit from Firewalls, Load Balancers, Web Servers, Content Delivery Networks, and Database Servers.

Firewalls help protect the web application from both external threats and internal vulnerabilities depending on where the firewalls are configured. Load Balancers help distribute traffic across the web servers which handle the HTTP(S) requests (this is where Apache comes in) and application servers (servers that handle the functionality and workload of the web app.) We also have Database Servers, which handle asset storage and backups. Depending on your infrastructure, your database and application can both live on the same server although it’s recommended to keep those separate.

Easily monitor and troubleshoot Apache web activity


Apache web server software support

Gain better insight into systems infrastructure, and your clients and customers' interactions with your website and applications.

Web Server Landscape

The internet is comprised of many different technologies and not all of them are the same. While Apache is arguably one of the most popular web servers out there on the net, there are many other players and the landscape is always changing. Back in the late 90s and early 2000s, Apache’s dominance was very strong, serving over 50% of the internet's active websites. Microsoft's IIS (Internet Information Services) was also an option but not nearly as popular.

Today, Apache still serves a large portion of the active websites but their share of the field has shrunk from 50% to just under 40% as of 2018 and NGINX, a relatively new player to the web server playing field, is in second place with roughly 35% and Microsoft IIS hovering around 8-10%. Every year there’s a new crop of web applications with new stacks and servers so the landscape is always changing.

Why Apache Web Servers?

Apache is considered open source software, which means the original source code is freely available for viewing and collaboration. Being open source has made Apache very popular with developers who have built and configured their own modules to apply specific functionality and improve on its core features. Apache has been around since 1995 and is responsible as a core technology that helped spur the initial growth of the internet in its infancy.

One of the pros of Apache is its ability to handle large amounts of traffic with minimal configuration. It scales with ease and with its modular functionality at its core, you can configure Apache to do what you want, how you want it. You can also remove unwanted modules to make Apache more lightweight and efficient.

Some of the most popular modules that can be added are SSL, Server Side Programming Support (PHP), and Load Balancing configs to handle large amounts of traffic. Apache can also be deployed on Linux, MacOS, and Windows. If you learn how to configure Apache on Linux, you can administer Apache on Windows and Mac. The only difference would be directory paths and installation processes.

Features of Apache Web Server

  • Handling of static files
  • Loadable dynamic modules
  • Auto-indexing
  • .htaccess
  • Compatible with IPv6
  • Supports HTTP/2
  • FTP connections
  • Gzip compression and decompression
  • Bandwidth throttling
  • Perl, PHP, Lua scripts
  • Load balancing
  • Session tracking
  • URL rewriting
  • Geolocation based on IP address

How does Apache Web Server Work?

Apache functions as a way to communicate over networks from client to server using the TCP/IP protocol. Apache can be used for a wide variety of protocols, but the most common is HTTP/S. HTTP/S or Hyper Text Transfer Protocol (S stands for Secure) is one of the main protocols on the web, and the one protocol Apache is most known for.

HTTP/S is used to define how messages are formatted and transmitted across the web, with instructions for browsers and servers on how to respond to various requests and commands. Hypertext Transfer Protocol Secure is usually through port 443 with the unsecured protocol being through port 80.

The Apache server is configured via config files in which modules are used to control its behavior. By default, Apache listens to the IP addresses configured in its config files that are being requested. This is where one of Apaches many strengths come into play.

With the Listen directive, Apache can accept and route specific traffic to certain ports and domains based on specific address-port combination requests. By default, Listen runs on port 80 but Apache can be bound to different ports for different domains, allowing for many different websites and domains to be hosted and a single server. You can have domain1.com listening on port 80, domain2.com on port 8080 and domain3.com on port 443 using HTTPS all on Apache.

Once a message reaches its destination or recipient, it sends a notice, or ACK message, basically giving acknowledgment to the original sender that their data has successfully arrived. If there’s an error in receiving data, or some packets were lost in transit, the destination host or client sends a Not Acknowledged, or NAK message, to inform the sender that the data needs to be retransmitted.

Who Uses Apache Web Server?

Apache HTTP web servers are used by over 67% of all web servers in the world. Apache web servers are easy to customize environments, they’re fast, reliable, and highly secure. This makes Apache web servers a common choice by best-in-class companies.

Alternatives for Apache HTTP Server

While Apache web servers are very popular, they’re not the only web servers on the market. Below are a number of alternatives for Apache HTTP servers.

  • Nginx
  • Apache Tomcat
  • Node.js
  • Lighttpd
  • Cherokee
  • Microsoft IIS
  • Appweb
  • Hiawatha

Apache HTTP Server vs Tomcat

Simply put, Apache HTTP server is a web server designed to serve static web pages. Whereas, Apache Tomcat is an application server built to serve java applications. Web pages can still be served through Apache Tomcat, but it will be less efficient than using an Apache HTTP server.

Conclusion: Apache Web Server

Throughout the last few decades, Apache has proven to be a staple in many popular stacks and the backbone of the early internet year. While it’s popularity is declining and the options of web server choices are increasing, Apache still plays a pivotal role in many technology stacks and companies system infrastructure. Even with new technologies and servers coming out nonstop, Apache is still a technology every developer should learn how to handle and configure.

Easily monitor and troubleshoot Apache web activity

Sumo Logic helps you identify root issues, decrease downtime, increase availability, and improve overall system performance and user experience.

Apache HTTP server

The Apache HTTP Server, an open-source web server developed by the Apache Software Foundation. The Apache server is used to host web content. It responds to requests for content from web browsers, such as Internet Explorer and Firefox.

Note : The post uses RHEL/CentOS 7 distribution to install and configure the Apache server. Although the start/stop/install commands may differ but the configuration steps are same in all the linux distribution

Installing Apache

To configure your system as a web server, begin by installing the httpd software package.

Use the systemctl utility to enable the HTTP daemon to start at boot time and also to start the daemon immediately.

Apache Tomcat

Configuration files

The main configuration file for Apache is /etc/httpd/conf/httpd.conf. An auxiliary directory, /etc/httpd/conf.d, also exists to store configuration files that are included in the main configuration file. Configuration files that load modules are in the /etc/httpd/conf.modules.d directory.

New apachectl subcommands in CentOS / RHEL 7

A new apachectl sub-commands are available in CentOS / RHEL 7. The following example uses the configtest subcommand to check the configuration for possible errors.

Use the graceful subcommand to reload the configuration without affecting active requests.

Configuring Apache

The main configuration file for Apache is /etc/httpd/conf/httpd.conf. Apache runs as installed, but you can modify configuration directives in this file to customize Apache for your environment. Some of these directives are described in the post below.

Apache Web Server Software Download

Testing Apache HTTP server

You can confirm that Apache is working by pointing a browser on the local system to http://localhost as shown in the picture below. You can also point a browser to http:// followed by the IP Public address of the server or the ServerName directive that you specified in the configuration file. The test page shown below confirms the functioning Apache HTTP server.

To test the display of actual content, create an HTML file named index.html in the directory specified by the DocumentRoot directive (the default directory is /var/www/html). Apache automatically displays the index.html file in this directory, if it exists.

Apache Containers

What Is Apache Web Server Software

Apache containers are special configuration directives that group other directives. The containers use XML-style tags, meaning that the beginning of a container is <name> and the end is </name>. An index of all the container directives is available at http://httpd.apache.org/docs/current/sections.html. Refer the post below to get the most commonly used apache containers.

Apache Virtual Hosts

Apache supports virtual hosts, meaning that a single Apache server can respond to requests directed to multiple IP addresses or host names. Each virtual host can provide content and be configured differently.
You can configure virtual hosts in two ways:
1. IP-based Virtual Hosts (host-by-IP)
2. Name-based Virtual Hosts (host-by-name)

Apache Web Server Software

With host-by-IP, each virtual host has its own IP address and port combination. The Apache web server responds to the IP address that the host resolves as. Host-by-IP is required for serving HTTPS requests due to restrictions in the Secure Sockets Layer (SSL) protocol.

Apache Web Server Software Technical Support

With host-by-name, all virtual hosts share the common IP address. Apache responds to the request by mapping the host name in the request to ServerName and ServerAlias directives in the particular virtual host’s configuration file.

Use the <VirtualHost host-name> container to implement virtual hosts. After the first VirtualHost is defined, all of the content served by Apache must also be moved into virtual hosts.

Apache Server As A Web Server Management Software

The following example is a simple name-based virtual hosts configuration: